Skip to Main Content

++

Shock is a state of severe systemic reduction in tissue perfusion characterized by decreased cellular oxygen delivery and utilization as well as decreased removal of waste byproducts of metabolism. Hypotension, although common in shock, is not synonymous to shock. One can have hypotension and normal perfusion, or shock without hypotension in a patient who is usually very hypertensive. Shock is the final preterminal event in many diseases. Progressive tissue hypoxia results in loss of cellular membrane integrity, a reversion to a catabolic state of anaerobic metabolism, and a loss of energy-dependent ion pumps and chemical and electrical gradients. Mitochondrial energy production begins to fail. Multiple organ dysfunction follows localized cellular death, and organism death follows. Despite recent advances in treatment, mortality remains high: > 50% in cardiogenic shock and > 35% in septic shock.

++

Blood pressure is determined by the formula BP = systemic vascular resistance (SVR) × cardiac output (CO), where CO = heart rate (HR) × stroke volume (SV). SV = end diastolic volume (EDV) minus end systolic volume (ESV). EDV is the filled ventricular volume prior to systolic contraction averaging about 100 cc in many adults. ESV is residual blood left in the ventricle after emptying during systole averaging about 40 cc. Therefore, the determinants of blood pressure are vascular resistance, HR, preload volume, and contractility (see Figure 11–1). SVR is the vascular “tone” and is a large determinant of diastolic blood pressure. EDV is largely determined by preload volume that augments SV via Frank–Starling curves where increases in diastolic filling volumes increase CO. ESV is determined largely by cardiac contractility and it decreases as the heart ejects a greater percentage of its diastolic volume. For example, one can increase SV by increasing preload (EDV) with volume or decreasing ESV with increased contractility. The ejection fraction ((EDV – ESV)/EDV) thus increases.

++
++

The initial derangement precipitating a state of shock might be (1) vasodilation (causing a decreased SVR) from sepsis, anaphylaxis, drugs, or cervical cord lesion, (2) extremes of HR, (3) loss of preload volume (causing decreased EDV) from blood or volume loss, or (4) loss of contractility (increasing the ESV) from heart failure. Compensatory mechanisms come into play and provide many of the clinical clues to early shock.

++

The initial compensatory mechanisms depend on the initial insult. (1) Vasodilation with loss of SVR generally causes a compensatory tachycardia and thirst. Despite systemic tissue hypoxemia, the skin remains perfused and is warm initially. (2) Blood or fluid loss (decreasing EDV) causes a reflex increase in SVR, which increases diastolic BP, narrowing the pulse pressure, increases sympathetic cholinergic sweating and makes the patient pale, thirsty, and cool. As volume loss increases, tachycardia and hypotension ensue. (3) Loss of contractility also is compensated by increases in SVR to maintain blood pressure with similar symptoms.

++

...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessEmergency Medicine Full Site: One-Year Subscription

Connect to the full suite of AccessEmergency Medicine content and resources including advanced 8th edition chapters of Tintinalli’s, high-quality procedural videos and images, interactive board review, an integrated drug database, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessEmergency Medicine

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.