Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!


The central nervous system (CNS) coordinates responses to the fluctuating metabolic requirements of the body and modulates behavior, memory, and higher levels of thinking. These functions require diverse cells: astrocytes, neurons, ependymal cells, and vascular endothelial cells. Disruption or death of any one cell type can cause critical changes in the function or viability of another. This cellular interdependence, along with the high metabolic demands of the CNS, makes neurons especially vulnerable to injury from both endogenous neurotoxins and xenobiotics. Endogenous neurotoxins, such as the metals iron, copper, and manganese, are substances that are critical to CNS function but are harmful when their penetration into the CNS is poorly controlled.

The understanding of the normal chemical and molecular functions of the CNS is limited at best. Interestingly, cellular mechanisms are sometimes revealed by investigating xenobiotic-induced neuronal injuries.39,69 For example, the pathophysiology of Parkinson disease, which affects movement and motor tone, was elucidated by the inadvertent exposure of individuals to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a by product of synthesis of a meperidine analog. The mechanisms of axonal transport were elucidated by investigations of the effects of acrylamide exposures in human and animal models.59 The neurodegenerative changes of amyotrophic lateral sclerosis have a promising xenobiotic model in β-methylamino-L-alanine (BMAA), a neurotoxin found in the cyanobacteria associated with cycad plants ingested by the Chamorro people of Guam (Chap. 13).

There are few minimally invasive methods available to investigate xenobiotic-induced CNS injury. Biomarkers are usually nonspecific and not readily available. Xenobiotic concentrations of blood and urine rarely reflect tissue concentrations of the CNS.61 Cerebrospinal fluid (CSF) is useful in excluding CNS injury from infection, hemorrhage, and inflammatory processes, but is, with few exceptions, poorly reflective of the etiology of neuronal injuries.93 Similarly, electroencephalograms and electromyelograms are useful in only a few types of xenobiotic exposures, and neuroimaging, while progressively evolving,55 is a poor substitute for neuroanatomical evaluations that are usually available only on autopsy. Much of the current study to elucidate the mechanisms of CNS injury uses animal models, cultured astrocytes, and other tissue, or postmortem investigations. Less commonly, occupational evaluations, such as the enzyme activity of cholinesterases, are used in pesticide-exposed workers.

This chapter reviews some basic anatomic and physiologic principles of the nervous system and the common mechanisms by which xenobiotics exploit the functional and protective components of the CNS, with a few relevant examples. The multiple factors determining the clinical expression of neurotoxicity are reviewed.



Neurons are the major pathway of cellular communication in the CNS. Having one of the highest metabolic rates in the body, these cells are especially sensitive to changes in the microenvironment and are dependent on astrocytes, choroidal epithelium, and capillary endothelium to confer protection and deliver glucose and ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.