+++
INTRODUCTION AND EPIDEMIOLOGY
++
Diabetic ketoacidosis (DKA) is an acute, life-threatening complication of diabetes mellitus. DKA occurs predominantly in patients with type 1 (insulin-dependent) diabetes mellitus. The incidence of DKA in the United Kingdom, United States, and other developed countries is comparable, with an annual incidence between 13.4 and 14.9 cases per 1000 type 1 diabetics.1 There has been an increased number of DKA cases in patients with newly diagnosed type 2 (non–insulin-dependent) diabetes mellitus, especially in African Americans and Hispanics. Ketosis-prone type 2 diabetics have significant impairment in insulin secretion and action that subsequently recovers after resolution of DKA.1 Over the past decade in the United States, the frequency of DKA has increased by 30%, with close to 140,000 hospitalizations per year.2 A better understanding of the pathophysiology of DKA and an aggressive, uniform approach to its diagnosis and management have reduced mortality to <1% of reported episodes in experienced centers.1 However, mortality is higher in patients from developing countries, those with comorbidities and the elderly.3
++
Figure 225-1 illustrates the complex relationships between insulin and counterregulatory hormones. DKA is a response to cellular starvation brought on by relative insulin deficiency and counterregulatory or catabolic hormone excess (Figure 225-1). Insulin is the only anabolic hormone produced by the endocrine pancreas and is responsible for the metabolism and storage of carbohydrates, fat, and protein. Counterregulatory hormones include glucagon, catecholamines, cortisol, and growth hormone. Complete or relative absence of insulin and the excess counterregulatory hormones result in hyperglycemia (due to excess production and underutilization of glucose), osmotic diuresis, prerenal azotemia, worsening hyperglycemia, ketone formation, and an elevated anion gap metabolic acidosis.4
++
++
Ingested glucose is the primary stimulant of insulin release from the β cells of the pancreas. Insulin’s main action occurs at the three principal tissues of energy storage and metabolism—the liver, adipose tissue, and skeletal muscle. Insulin acts on the liver to facilitate the uptake of glucose and its conversion to glycogen while inhibiting glycogen breakdown (glycogenolysis) and suppressing gluconeogenesis. The net effect of these actions is to promote the storage of glucose in the form of glycogen. Insulin increases lipogenesis in the liver and adipose cells by producing triglycerides from free fatty acids and glycerol while inhibiting the breakdown of triglycerides. Insulin stimulates the uptake of amino acids into muscle cells with subsequent incorporation into muscle protein while preventing the release of amino acids from muscle and hepatic protein sources.
++
Deficiency in insulin secretion due to loss of islet cell mass is the predominant defect in type 1 diabetes mellitus. In the initial stages of diabetes mellitus, the secretory ...