++
β-Adrenergic receptor antagonists (β-blockers) are medications used in the treatment of various cardiovascular, neurologic, endocrine, ophthalmologic, and psychiatric disorders. Among all drug-related fatalities reported to poison control centers nationwide in 2016, β-blockers were involved in 8% of all cases and were responsible for 2% of single-agent fatal exposures.1
++
The β-adrenergic receptors are membrane glycoproteins present as three subtypes in various tissues (Table 194-1). These receptors play a critical role in cardiovascular physiology by modulating cardiac activity and vascular tone.
++++
During times of stress (i.e., catecholamine release), β-adrenergic receptor stimulation increases myocardial and vascular smooth muscle cell activity through a sequence of intracellular events (Figure 194-1).2,3
++++
The β-receptor is coupled to a stimulatory Gs protein. This Gs protein stimulates adenylate cyclase, which in turn catalyzes the formation of cyclic adenosine monophosphate (cAMP), the so-called intracellular second messenger. Increased cAMP ultimately phosphorylates the L-type calcium channel, which leads to channel opening and calcium entry into the cell. This increase in cytosolic calcium acts at the ryanodine receptor, a calcium channel on the sarcoplasmic reticulum, causing it to release its stored calcium into the cytosol. This process is termed calcium-induced calcium release. Stored calcium becomes available to ...